"The Nine Chapters on the Mathematical Art" (Contest (NCC) 2025©
Student Name:Please write your	name on <i>every</i> page.
6 Section F	
F1 At a movie theater, buying 13 popcorns and 16 drinks costs \$184. Buying drinks costs 7 dollars more. How much would a popcorn and drink costs.	
Answer to	F1:
F2 On a standard six-sided board game die, opposite sides add up to 7. such a die, she is only able to see the top and front faces of the die. If sh what is the probability that all four faces she sees are different?	
Answer to	F2:
F3 Find the units digit of $1 + 2 + 3 + \cdots + 2025$.	
Answer to	F3:

F4

Abby and Betty are playing a game together on the chalkboard. On the first round, Abby draws the number 1 on the chalkboard, and then Betty can draw the number 2 at any position in the chalkboard to form a new two digit number (i.e. 12 or 21). On each subsquent round, Abby continues to add a digit of 1 to the number in any position (for example from 12 she could make 112 or 121), and then Betty adds a digit of 2 to the number. After playing x rounds, Abby wins if the number is divisible by a perfect square greater than 1, and Betty wins otherwise. What is the smallest value of x such that Abby will always win?

Answer to	F4.	
\neg 11344C1 CO	' I ' I .	

"The Nine Cha	pters on the	Mathematical A	rt" Contest (NCC)) 2025©
---------------	--------------	----------------	---------------	------	---------

The Mine Chapters on the Mathematical Art Contest (NCC) 2025
Student Name:Please write your name on <i>every</i> page
Please write your name on <i>every</i> page
F5 Consider a semicircle with base AB and center O , with radius 2. Bisect OA at C and let D b
the intersection of the line through C perpendicular to AB with the arc of the semicircle Construct EF on the other side in the same way. Fold region ACD across the line CD an region BEF across EF to produce arcs OD and OF. What is the area of the curved triangl ODF?
Answer to F5:
F6 Two random positive integers a and b are chosen from between 1 and 10 inclusive. What the percentage chance that the line segment in the cartesian plane from (0,0) to (a , b) contains a third point with integer coordinates?
Answer to F6:
A gumball machine contains 100 gumballs, including exactly one rare rainbow gumbal Putting a quarter into the gumball machine dispenses a random gumball. If it is not the rainbow gumball, an additional rainbow gumball will be added to the machine to improve the odds, and you get to keep the gumball you were given. Jackson repeatedly puts quarter into the gumball machine until it gives him a rainbow gumball, and in total he ends u spending \$20.25. When expressed in lowest terms, the denominator of the probability of this occurring has n zeroes at the end. Compute the value of n.
Answer to F7:
F8 Let p and q be the roots of the quadratic equation $x^2 + bx + c = 0$. Find the smallest pair of positive integers (b, c) for which the expression
$p^4 - p^3q + p^2q^2 - pq^3 + q^4$
is a multiple of 2025.
Answer to F8: